"ECOLOGÍA de ECOSISTEMAS - PEDECIBA" - Edición 2025 (P2005)

CURSO para la MAESTRÍA en BIOLOGÍA PEDECIBA Subárea Ecología y Evolución, y otras maestrías de Facultad de Ciencias y UDELAR

(7 créditos para PEDECIBA)

10 de Setiembre al 28 de Noviembre, 2025

Miércoles y viernes de 09:00 a 12:00 h

Facultad de Ciencias, UdelaR - Montevideo

Modalidad presencial

DOCENTES

Daniel Conde (Coord.), Alejandro Brazeiro, Diego Lercari & Omar Defeo

DESCRIPCIÓN Y OBJETIVOS DEL CURSO

La Ecología de Ecosistemas abarca el estudio científico integrado de los procesos físicos, químicos y biológicos que determinan la distribución y abundancia de los organismos, sus interrelaciones, y las interacciones con la transformación de la energía y materia en los ecosistemas naturales. Este curso intensivo cubre, entre otros, los conceptos básicos y la evolución de las teorías sobre la Ecología de Ecosistemas, los ciclos y balances biogeoquímicos y energéticos, la estructura y procesos tróficos dominantes, el rol de la biodiversidad, la variabilidad espacio/temporal y la modelación de los ecosistemas, así como la respuesta de éstos a disturbios naturales y antrópicos. El curso provee la información necesaria para comprender estas temáticas en un amplio rango de ecosistemas acuáticos y terrestres.

Los objetivos del curso son desarrollar en el estudiante: i) un pensamiento crítico de los procesos ecosistémicos dominantes en diversos tipos de ecosistemas, y las tendencias y controversias actuales del conocimiento, y ii) la capacidad para aplicar, desde un punto de vista ecológico y con una perspectiva ecosistémica, los conceptos adquiridos a nuevas situaciones; iii) capacidad para sintetizar y comunicar efectivamente en forma oral y escrita los conocimientos adquiridos.

CONTENIDO TEMÁTICO

- Ecosistemas y Ecología de ecosistemas: definiciones y desarrollo histórico. Características generales de los ecosistemas. Escalas de aproximación. Tipología.
- Factores de control de la estructura y funcionamiento: factores abióticos externos e internos. Estequiometria ecológica y ciclos biogeoquímicos globales. El agua en los ecosistemas.
- Teoría de ecosistemas. Principios termodinámicos. Sistemas adaptativos complejos. Ciclo de adaptación.
- Relación diversidad-funcionamiento ecosistémico en el marco de la crisis de la biodiversidad. Servicios ecosistémicos.
 Modelos diversidad-funcionamiento. Redundancia y diversidad funcional. Rareza, dominancia y especies clave.
 Compensación y Singularidad. Estudios experimentales de efectos de diversidad sobre estabilidad y producción primaria.
 Ingeniería ecosistémica.
- Ecorregiones y ecosistemas continentales de Uruguay. Delimitación conceptual y geográfica. Evaluación ecológica de ecorregiones y ecosistemas.
- Escalas de espacio y tiempo. Estabilidad, equilibrio y dinámica ecosistémica.
- Resiliencia, disturbio, umbral. Respuestas ecosistémicas a impactos antrópicos y Cambio Global. Indicadores de cambio ecosistémico. Resiliencia multidimensional, trampas, cambios de régimen y colapsos social-ecológicos.
- Manejo basado en el ecosistema.
- Dinámica trófica; Modelos tróficos como contribución al manejo basado en el ecosistema

CRONOGRAMA

Fecha	Módulo	Modalidad	Detalle/Tema	Responsable
10 set		Teórico	Presentación del curso. Definiciones y conceptos básicos	Conde
12 set		Teórico	Factores de control de los procesos ecosistémicos	Conde
17 set		Teórico	Efectos comunitarios sobre los procesos ecosistémicos	Brazeiro
18 set (jueves)		Teórico	Teoría de ecosistemas	Conde
24 set	I	Teórico	Ecorregiones y ecosistemas de Uruguay: delimitación y evaluación ecológica	Brazeiro
26 set		Teórico	Escalas espacio/temporales; Estabilidad, equilibrio, dinámica	Defeo
1 oct		Teórico	Impactos; Resiliencia	Defeo
3 oct		Teórico	Manejo basado en el ecosistema	Lercari
8 oct		Teórico	Modelos ecosistémicos: contribuciones teóricas y prácticas	Lercari
10 oct	II	Seminario I (1)	Modelación ecosistémica	Lercari
15 oct		Seminario II	Sistemas social-ecológicos	Defeo
17 oct		Seminario III	Manejo basado en el ecosistema	Conde
22 oct		Seminario IV	Listas rojas y evaluación del riesgo de colapso de ecosistemas	Brazeiro
23 oct -18 nov	III	Trabajo individual	Elaboración de revisión/ensayo	Estudiantes
19 nov	IV	Presentación oral	Entrega revisión/ensayo; Presentación oral 1	Estudiantes
21 nov		Presentación oral	Presentación oral 2	Estudiantes
26 nov		Presentación oral	Presentación oral 3	Estudiantes
28 nov		Presentación oral	Presentación oral 4	Estudiantes
Fecha a confirmar		Examen		Estudiantes

⁽¹⁾ Fecha de entrega de resumen de idea tentativa para revisión o ensayo (200 palabras)

Todas las instancias del curso se desarrollarán en forma únicamente presencial.

El curso se basa en varios formatos didácticos, en el entendido que esto constituye una modalidad pedagógica más efectiva en relación al formato puramente expositivo. Por esta razón, el curso requiere por parte de los estudiantes dedicación al estudio de artículos, preparación de ensayos, presentaciones orales y participación activa en clase.

El curso consta de 52 horas presenciales y 40 de estudio o preparación de seminarios en forma individual.

El curso se desarrolla en base a:

- <u>Teóricos expositivos</u>. Durante el Módulo I los docentes presentarán clases sobre aspectos teóricos relevantes, ilustrados con estudios de caso específicos de las diversas temáticas.
- <u>Seminarios</u>. El Módulo II consta de Seminarios sobre temas clave por parte de los docentes del curso, culminando con la
 discusión grupal de las temáticas, con participación activa de los estudiantes (los temas indicados en el cronograma
 son tentativos).
- <u>Estudio individual</u>. El estudio se basará en material (teórico, revisiones, trabajos clásicos, etc.) sobre los conceptos básicos de cada tema contenido en el programa y estudios de caso (actividad no presencial).
- <u>Elaboración de una revisión o ensayo</u>. Individualmente, los estudiantes deberán formular por escrito una revisión o
 ensayo sobre alguno de los temas del curso, en base a trabajos específicos de la literatura. Los temas generales serán
 ajustados previamente con los docentes a partir de la elaboración de un resumen de la idea, y cada estudiante o grupo
 será asistido por un docente en la planificación del trabajo. Se estima una carga de 40 horas de trabajo para esta
 actividad.
- <u>Defensa oral de la revisión o ensayo</u>. Los estudiantes deberán defender oralmente el trabajo elaborado, culminando con preguntas y discusión sobre cada presentación.
- Examen. Consta de preguntas temáticas y/o integradoras y/o análisis de casos sobre las temáticas abarcadas en el curso.

CUPO, ASISTENCIA Y EVALUACIÓN

Tendrán prioridades primeramente estudiantes de posgrado PEDECIBA/Biología-Ecología, y luego de otros posgrados. El curso se dictará con cupo mínimo de 5 estudiantes de posgrado. Todas las instancias se desarrollarán en forma presencial, y se requiere la participación en el 75% de los mismos para salvar el curso. La aprobación del curso será la suma ponderada de los siguientes desempeños: examen (50 %), escrito y defensa oral de revisión/ensayo (30 %) y participación individual (20 %). El porcentaje de desempeño mínimo de aprobación es 65.

BIBLIOGRAFÍA Y MATERIAL DEL CURSO

Textos de estudio

- Aburto MO et al. (Ed.). (2012) Ecosystem-based management for the oceans. Island Press.
- Brazeiro A (2015). Ecorregiones de Uruguay: biodiversidad, presiones y conservación. Facultad de Ciencias, CIEDUR, VS-Uruguay, SZU.
- Brebbia CA (2012) Ecodynamics: The Prigogine Legacy. Wit Press, Southampton, 368 pp.
- Chapin FS III et al. (Ed.) (2009) Principles of ecosystem stewardship. resilience-based natural resource management in a changing world. Springer.
- Chapin FS III Matson P & Mooney H (2002) Principles of terrestrial ecosystem ecology. Springer.
- Díaz S et al. (2005): Biodiversity regulation of ecosystem services. Cap 11. En: Ecosystems and human well-being: Current state and trends. Island Press.
- Golley F (1993) A history of the ecosystem concept on ecology. More than the sum of the parts. Yale Univ.
- Hagen J (1992) An entangled bank. The origins of ecosystem ecology. Rurgers.
- Jorgensen SE (Ed.) (2016). Handbook of ecological models used in ecosystem and environmental management/3. CRC press.
- Jorgensen SE et al. (2007) A New Ecology: Systems Perspective. Elsevier.
- Loreau M et al. (2004): Biodiversity and ecosystem functioning. Oxford University Press.
- Margalef R (1993) Teoría de los sistemas ecológicos. Univ. de Barcelona.
- Meffe G et al. (2012). Ecosystem management: adaptive, community-based conservation. Island Press.
- Reynolds C (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute.
- Sterner R & Elser J (2002) Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press.

Trabajos en pdf (se entregan vía electrónica)

- Obligatorios: artículos de lectura obligatoria previa a cada teórico.
- <u>Complementarios</u>: artículos complementarios para el estudio.

Presentaciones de clase (se entregan vía electrónica luego de cada clase)